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A discussion of the 1950s and 1960s on the existence of an explicit covariant 
canonical formalism is renewed. A new point of view is introduced where Hamil- 
ton's principle, based on the existence of a Hamiltonian, is postulated independ- 
ently from the Lagrange formalism. The Hamiltonian is determined by 
transformation properties and dimensional considerations. The variation of the 
action without constraints leads to an explicit covariant canonical formalism and 
correct equations of motion. The introduction of the charge as a fifth momentum 
gives rise to a reformulation of classical relativistic point mechanics as a five- 
dimensional U(1) gauge theory with a theoretically invisible extra dimension. A 
generalization to other gauge groups is given. The inversion of the proper time 
is introduced as a new particle-antiparticle symmetry that allows one to show 
that in the five-dimensional classical theory all particles have positive energy. 

1. I N T R O D U C T I O N  

The existence o f  a Lagrange  funct ion and  H a m i l t o n ' s  va r ia t iona l  princi-  
ple tha t  leads to the E u l e r - L a g r a n g e  equat ions  of  mo t ion  fo rm the general ly  
accepted  basis o f  classical  po in t  mechanics .  In  nonrela t iv is t ic  classical mech-  
anics the defini t ion o f  the H a m i l t o n i a n  as a t r ans fo rma t ion  o f  the Lagrang-  

ian leads to the equivalent  canonica l  equa t ions  tha t  m a y  be der ived f rom 
the va r ia t iona l  pr inciple  with a H a m i l t o n i a n  act ion.  This  s i tua t ion  changes 
in classical  relat ivist ic  mechanics .  The  general ly  accepted  manifes t  Loren tz -  
invar ian t  Lag rang ian  for relat ivist ic  po in t  par t ic les  is given by  (Arzeli+s, 
1972; Dough ty ,  1990) 

L ( x  ~, Ac ~, r)  = moc[.~" gu v(x)A v] i/2 + q A u ( x ) j f  (1) 
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but there is no equivalent covariant canonical formalism, since, if we define 
the vector of the four-momentum by 

8L guv$c v 
Pu = 8.2~ = moc + qA~ (2) (Sf  g~,,,.~") 1/2 

the transformation from the velocities to the momenta is singular due to the 
constraint 

q uJg v t ~ - q  vJ=moZc 2 (3) 

and we only arrive at the implicit equation 

4 ,5):0 (4, 
but not at an explicit canonical formalism. The implicit formalism with 
arbitrary constraints in phase space was developed by Dirac (1950, 1958). 
There followed a discussion on the existence of an explicit covariant canon- 
ical formalism based on a Hamiltonian in the 1950s and 1960s (Arzeli6s, 
1972; Macke, 1952; Falk, 1952; Sauter, 1959; Stephani, 1962; Schay, 1962; 
Rund, 1962; Kalman, 1962; Linder, 1965), with the above result (Linder, 
1965) that if we start with a covariant Lagrangian, then no explicit Hamilton- 
ian exists due to the fact that the Lagrangian is homogeneous of degree one. 
Previously, Falk (1952) had given an explicit Hamiltonian. He argued that 
the constraint 

2~ g~,~2 ~= c 2 (5) 

together with the desired equation 

8 M  
s  (6) 

allows for M the complete integral 

M = [(p, - z~)g u V(pv - Z v)11/2 (7) 

which is basically the rest mass of the particle, and he showed that if Z~ is 
identified with the electromagnetic potential, then the canonical equations, 
assumed to hold, lead to the correct equations of motion. He thus ignored 
the dependence by definition of the Hamiltonian on the Lagrangian. For 
this reason his theory was rejected and even denied physical significance by 
Schay (1962). But it is obvious that Falk's theory does give correct physical 
results. We now intend to put these results on a well-defined basis. We do 
this by postulating the existence of a Hamiltonian and the corresponding 
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action principle independently from the Lagrangian. We then determine the 
Hamiltonian of this theory from transformation properties and dimensional 
considerations and thus avoid the heavily criticized use of some of the desired 
properties of the theory, which we instead will then be able to derive,  and, 
going beyond Falk's theory, will elucidate other intriguing properties that 
the Lagrangian formalism does not feature, including the construction of a 
five-dimensional generalization. 

2. THE POSTULATE ON THE HAMILTONIAN 

We now formulate a postulate, called Postulate H, that we think 
incorporates the minimal assumptions one has to make in order to set up a 
theory of a single classical relativistic point particle in external fields. Where 
necessary we give alternate formulations for special relativity, marked by 
(S), and general relativity, marked by (G). In special relativity the metric q 
of space-time is assumed to be Minkowskian and the gravitational field g is 
different from q, whereas in general relativity g is the metric of the space- 
time manifold, g =11 only in the absence of gravitation. We are thus open 
for different theories of gravitation, noting that the theory for a single point 
particle is independent of the geometry of the space-time manifold as long 
as we do not consider the action for the fields. The basic difference arises in 
the set of admissible coordinate transformations. 

2.1. Postulate  H 

A point particle is described by its position (x(v), p(v)) in the cotangent 
bundle of a four-dimensional space-time manifold M, where (S) M is ~4, 
(G) a four-dimensional pseudo-Riemannian space-time manifold. 

The space-time coordinates x ", /~ = 0, 1, 2, 3, have physical dimension 
of length, the momentum coordinates pu, /l = 0, 1, 2, 3, of the dual of the 
tangent space that of mass times velocity, and the parameter v that of time. 
The time is given by t = x~  c being the constant velocity of light. Under 
coordinate transformations x ~ - ,  x " ( x  v) the coordinates Pv transform as a 
covariant four-vector, the electromagnetic potential A,(x) is a covariant 
tensor of first rank, and the (S) gravitational field, (G) the metric g,v(x) is 
a covariant tensor of second rank. 

A Hamiltonian H(x, p, v) exists that is defined on the eight-dimensional 
phase space and is a function of a real parameter z, with the following 
properties: 

H is real-valued and has the physical dimension of energy. H as a 
function of the coordinates transforms as a scalar under the admissible set 
of transformations, which are (S) the Poincar~ group, (G) general coordinate 
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transformations. For  physical trajectories (x(r) ,  p(z)),  r o < r < r ~ ,  of a 
particle the variation of  the action 

Sa = {p(r) dx(r)  - H(x( r ) ,  p(r) ,  r) dr} 
0 

vanishes, fiS~,= O, for any independent variations fix and gp that vanish at 
the limits r0 and f t .  

We note that the use of  the cotangent bundle gives a natural interpreta- 
tion to the "product"  p dx. The coordinates are assumed to be canonical in 
that p dx =Ps, dxU in any coordinates. We now analyze general implications 
of  this postulate. From the variational principle the equations of  motion are 
derived. The variation of  the action, written in coordinates, is given by 

~' 0 .v 0 

since the variations gx ~ and 8p~ are independent. The condition 8SH = 0 
yields, with a partial integration, using that the variations vanish at the 
limits, 

~H 

0 x  ~ 
(9) 

0H 

op~ 

So Postulate H leads to Hamilton's canonical equations and hence to a 
full canonical formalism with Hamilton-Jacobi differential equations and 
Poisson brackets. Since the derivation of  the equations of motion is inde- 
pendent of the chosen coordinates, it immediately follows that coordinate 
transformations are canonical transformations. If  some coordinate x ~ is 
cyclic, then the corresponding momentum px is a constant of motion. Inde- 
pendence from time thus leads to energy conservation, the energy being 
given by cpo. If  H does not explicitly depend on the parameter v, OH/Or • 
O, we have 

L H= oH ~ +  0/r =0 (10) 
dr 0x ~ c3p 

Hence H itself is a constant of motion. Considering the dimension, we see 
that c -  2H is a conserved mass that only can be the rest mass of  the particle 
under consideration, up to a constant multiple. We thus will be able to derive 
the constancy of  the rest mass from our theory if we can find a Hamiltonian 
independent of r that satisfies Postulate H. This is a first major difference 
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from Lagrangian theory. There one has to introduce the rest mass as a 
constant in order to build a Lagrangian with the correct physical dimension 
and there is no means to derive the constancy of the rest mass. We did not 
provide in Postulate H for such a constant because we can do without it, as 
we now proceed to show. 

3. THE HAMILTONIAN 

If we require that the Hamiltonian H0 for a free particle neither depends 
on the parameter v nor on the space-time coordinates, then from dimensional 
considerations we are left with the scalar 

Ho= c(pv~"Vpv)l/2 (11) 

and constant multiples of this. Any other Hamiltonian is excluded because 
we then have to introduce a constant with dimension of mass. This constant 
could be only the mass of a particle, leading to the familiar constraint pUp~ = 
const that is not incorporated in the theory. Such a theory is therefore 
rejected (Doughty, 1990). Our theory, on the contrary, will be a theory for 
particles of any mass, without any constraints. The free real number in (11) 
has been chosen such that c-2H0 indeed becomes the rest mass of the particle, 
which is just Falk's (1952) result. The magnitude of the rest mass is to be 
determined from the initial conditions P,(Zo), the Hamiltonian is the same 
for all particles. The canonical equations for the free particle read 

3H 
p ~ = -  =0  

~x ~ 
(12) 

0H 
_ c ( ( p . , ? . % ) , / 2 ) -  

The first equation expresses the conservation of the four-momentum; from 
the second the relation 

2 ~ 2 ~ = c  2 (13) 

follows, which is just Falk's starting relation (5). Hence it is a consequence 
of our theory that the parameter v is always the proper time of the particle. 
This is the second major difference from Lagrangian theory, where one has 
reparametrization invariance. It thus becomes clear that both formalisms 
cannot be equivalent. The Lagrangian is one function for particles of fixed 
constant rest mass and arbitrary parameterization of  the trajectories, the 
Hamiltonian is one function for particles of any rest mass that is a constant 
of motion, whereas the parameter is fixed by the equations of motion to be 
the proper time. The Hamiltonian for a particle in an external gravitational 
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and electromagnetic field is now obtained from the free Hamiltonian H0 by 
the "minimal" substitution 

T I ~ g ,  p~---rpu - q A ~ ( x )  (14) 

where q is the electric charge of the particle. To be in accordance with 
Postulate H we can simply add "A particle possesses a constant electric 
charge q" to it. We did not provide for this in Postulate H because it is 
obvious that this introduces a feature we had avoided with respect to the 
rest mass; there are now different Hamiltonians for differently charged part- 
icles. We now first discuss the resulting theory and then will show in Section 
4 that there exists a second possibility that leads to a five-dimensional theory 
without this undesirable feature. 

The Hamiltonian for a particle with charge q and arbitrary mass is 
postulated to be given by 

H ( x ~ , p v )  = c[(p~ - q A ~ , ( x ) ) g U ~ ( x ) ( p ~ - q A v ( x ) ) ]  u2 (15) 

Again the rest mass of the particle, given by mo = c - 2 H  is a constant of 
motion. We use this to write the equations of motion as 

Ycu = m o  - l g~ ~ (p ~ _ qA  v) 
(16) 

/~ = q ~A v ~v _ 1 mo ~g~ ~:~z 
Ox u 2 Ox u 

Again the parameter v is fixed to be the proper time, now defined by 

.;d'g,, ~(x):U = c 2 (17) 

We may eliminate p~ from the equations of motion to obtain the more 
familiar form 

where 

moSf  = moG s, + q F t, (18) 

0x 0x j 
(19) 

is the force of the gravitational field and 

F~ ~ v [ ~ A v  OAz[.~z (20) = g  

is the electromagnetic force. 
So we have recovered the well-known equation (18) from Postulate H 

with the Hamiltonian given by (15). We moreover point out that it follows 
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from equations (17) and (18) together that the inertial mass and the gravita- 
tional mass of a point particle are equal. This becomes explicit if we rewrite 
equation (18) in terms of the observable velocity 

v ' ( t ) =  x U ( r ( t ) ) = : ~ u ( r ( t ) )  ~-  (t) (21) 

and the relativistic mass 

m = mo[dt/drl  = m o c / ( v ~ g ,  ~v~) 1/2 (22) 

We obtain 

The sign 

d 
- -  m y  u = -mFUv~vV vZ + crqF~vv v (23) 
dt 

dr~dr 
cr = - -  (24) 

Idt /drl  

is related to particles and antiparticles, as we will see in Section 5. We clearly 
see that inert ial  mass  equals grav i ta t ional  mass  equals relat iv is t ic  mass.  We 
may well say that this is a law within the theory because in writing down 
the Hamiltonian we did not make any assumption about any of these masses. 
The relativistic mass is uniquely fixed only by the presence of the electromag- 
netic force, that is, by the value of q. We see that a particle moves as if g 
were the metric and equation (27) tell us that c dr is the line element of the 
presumed metric g, but in fact we do not need to assume this as long as we 
consider only the motion of a single particle in external fields. Phenomena 
such as the advance of planetary perihelia, the bending of light, the gravita- 
tional red shift, and the time delay of signals are derived from the equations 
of motion and are a test for the values of the gravitational field (Anderson, 
1967). These equations depend on the coupling of the gravitational field to 
the action; with respect to the generation of this field we are still open to 
any theory consistent with the equations of motion (Anderson, 1967). 

4. FIVE DIMENSIONS AND MORE 

4.1. Five-Dimensional Reformulation of Classical Relativistic Mechanics as 
a U(1)-Gauge Theory 

The construction of the Hamiltonian for charged particles on the eight- 
dimensional phase space has brought the strange feature that we have the 
same Hamiltonian for particles of any mass, but different functions if the 
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charge is different. It can be seen that it is the introduction of a fourth pair 
of coordinates into the relativistic theory compared to the nonrelativistic 
case that allowed us to eliminate from the Hamiltonian the constant rest 
mass, which instead became a constant of motion. This suggests that instead 
of postulating a constant electric charge, we could introduce a fifth pair 
(x 4, t04) of coordinates and try to obtain the charge as another constant of 
motion. Obviously the momentum p4 is conserved if the coordinate x 4 is 
cyclic. Moreover, it is immediately seen that if we directly replace the charge 
q in the Hamiltonian (15) by the momentum p4 

q --*P4 (25) 

then the Hamiltonian becomes the root of a quadratic form in the five- 
momentum, 

H~ffI(x~,p,a)=c[p,a~,PO(x'~)p,)] 1/2, /2, 9=0,  1 ,2 ,3 ,4  (26) 

with the five-dimensional contravariant second-rank tensor ~ given by 

,=I_~A ~ A~A~; (27) 

This matrix is singular and hence not the inverse of some five-dimensional 
metric. This yields a theory equivalent to the four-dimensional theory with 
respect to particle motion, but it is not of Kaluza (1921)-Klein (1926) type. 
The fifth dimension is nongeometrical, it constitutes a true "internal" space. 
Due to this circumstance we are not forced to introduce a constant that 
makes the electromagnetic potential dimensionless; instead, we directly 
ascribe the dimension of electric charge to the fifth momentum that then 
may be measured in units of the elementary charge e, and the fifth coordinate 
x 4 attains the dimension of action divided by charge and may be measured 
in units ofh/e, h the Planck constant. The theory is not geometric and avoids 
the use of the gravitational constant in the particle action. 

We consequently assume that the ten-dimensional phase space is now 
given by the product of the original eight-dimensional phase space and the 
cotangent bundle of a one-dimensional (compact) manifold. The topology 
of the internal space is linked with charge quantization in a quantized theory 
(Klein, 1926; Souriau, 1963). The five-dimensional action reads 

s~= {p(r) dx(r) -~(x(r), p(r)) dr} (28) 
0 

This is one action for particles of any mass and any charge. The four- 
dimensional equations of motion (16) where we replace q by P4, together 
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with the new equations 

p4=0 
A ( 2 9 )  

~4 = mo l~4Up~ 

constitute the set of the five-dimensional canonical equations. The particle 
motion is not changed by these equations; there is no new force and the 
parameter r is still the proper time, a major difference from Kaluza-Klein 
theory. Due to the fact that the coordinate x 4 is cyclic, the charge q=p4 is 
now, like the rest mass, a constant of motion, to be determined from the 
initial condition p4(z'0). Since the line element 

ds 2 = guv dx  u dx  v (30) 

remains unchanged, length measurements in space-time are not influenced; 
there is no physical length associated with the new dimension, it is truly 
"internal" and theoretically invisible. This justifies the choice of the electric 
charge, which is not related to any length scale, as the physical dimension 
of the internal space. The second equation of motion in (29) seems insignifi- 
cant at first sight, but it has an interesting consequence. The action vanishes, 
$9 = 0, for any solution of the five-dimensional equations of motion inserted. 
This is a universal feature, independent of particle properties, trajectories, 
and external fields, whereas in any three- or four-dimensional theory the 
values of the action depend on these. 

Our five-dimensional theory substantially differs from the original ideas 
of Kaluza (1921) and Klein (1926), since it is impossible to extend the 
Einstein-Hilbert action for the gravitational field to a unified action for the 
singular field ~. A feature in common with Kaluza-Klein theories is that 
gauge transformations are induced by coordinate transformations of the 
type 

X f l '  = X t~, X 4t ~-" X 4 + f ( x " )  (31 ) 

The covariant transformations of p~ and dP ~ are given by 

g .  v, = g .  ~, A" '  = A" + g~ ~ & /  ~x ~ 
(32) 

Pu' =-P. --P4 ~?f/Ox" P4' =P4 

Hence the Hamiltonian and the action S~ are invariant under these gauge 
transformations, whereas the Lagrangian (1) and the action S~ are not, 
they change by a boundary term. If we assume that the internal space is 
topologically S 1 (Einstein and Bergmann, 1938), then we may speak of our 
theory as a U(1) gauge theory since the coordinate transformations (31) are 
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induced by the operation of  the group U(1) on itself (Souriau, 1963). If  

7(x ~) = exp[if(x~)e/h] ~ U(1) (33) 

defines a local group element, the transformation (31) may be defined by 

exp(ix4'e/h) = 7(x ~) exp(ix4e/h) (34) 

where we have explicitly taken account of  the physical dimensions. 

4.2. Generalization to Other Gauge Groups 

The generalization to other gauge groups is straightforward. We take 
the cotangent bundle of any N-dimensional compact Lie group G with 
canonical coordinates yJ = x 3 +j and p3 +;, j = 1 . . . .  , N, as the internal phase 
space. As fields we introduce N four-vectors B~J(x) and the (4 + N)  • (4 + N)  
matrix ~ ~,/2, 9 = 0, 1 . . . .  ,3  + N, 

B~B/j (35) 

The Hamiltonian is defined by 

~I= c(p fl gl2~9) 1/2 (36) 

and the action as before. The matrix ~ has rank 4 and therefore again the 
proper time is defined by relation (17) and length measurements are not 
influenced by the additional dimensions. Thus we have the same topology, 
but not the same geometry as standard unified theories (Weinberg, 1983). 
The action and the Hamiltonian are now invariant under local gauge trans- 
formations that depend only on the four coordinates x u. Gauge trans- 
formations can be defined via the operation of  the group G • G on G, as 
there are transformations corresponding either to the operation of the group 
on its left or on its right: Let Lj be a basis of  the Lie algebra of  G and 
(a(x~), fl(xU))~G x G be a local pair of  group elements of G. Then a trans- 
formation of  the coordinates 

is defined by 

y; --, y ' (y; ,  x ~) 

exp[LjyJ'(y j, xU)] = a(x  ~) o exp(LjyJ) o fl(x ~') (37) 

This is well defined due to the properties of  a Lie group and the canonical 
coordinates. Two transformations defined by (at(x~),/3l(X~)) and 
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(a2(xU),/3z(xU)) are identical if 

- I  al o a2=/31 o/3= - l=~ , (xu)eC(G)  (38) 

are elements of the center C(G) of the gauge group G. This induces an 
equivalence relation ~ on G x G; the true local gauge group consists of the 
quotient G x G/~. If/3 = a - ~, then the coordinates transform linearly under 
the adjoint representation of G. We may split any transformation (a,/~) into 
a "rotat ion" (a, a-1) and a "translation" (1, a o/~). If  the group G is Abel- 
ian, the gauge group is G itself and there are no rotations and the "transla- 
tions" are true translations as in the U(1) case. This splitting gives rise to a 
second mapping of G x G into the transformations on G, defined by 

((a, fl),g) ~ a ogo a - ' o / ~  (39) 

whence the quotient is taken only with respect to the first factor. This struc- 
ture of the gauge group is interesting if one considers the groups SU(3)co~or 
and SU(3)navor and the fact that the charges of quarks, multiples of one- 
third of the elementary charge, seem to be related to the center of the 
group SU(3). 

The fields transform like 

g~,,, =gUy 
(40) 

BuJ, = ( ~yJ, / @k)B~k + gU v ( @j, / OxV ) 

The transformed fields in general will depend on the coordinates of the 
internal space. Hence not all momenta (charges) of this space are conserved 
if such transformations are physically allowed. If  the Lie algebra contains 
the identity, then the corresponding charge is always conserved, as in the 
U(1) case. On the other hand, if one allowed transformations of the four 
coordinates x u to depend on the internal coordinates, such a conservation 
law would be destroyed. Since such transformations leave the action invari- 
ant, criteria for the admissibility of coordinate transformations have to be 
found independently from the particle action and are beyond the scope of 
this work, since one has to consider the action for the fields. 

5. PARTICLES AND ANTIPARTICLES 

We now discuss the concept of antiparticles within the framework of 
the five-dimensional theory. The equation of motion (23), expressed in 
observable quantities, shows that it describes two kinds of particles. There 
are those with mass m and charge q if dt/dr is positive and a second kind 
of particle where the sign of either mass or charge is reversed if dt/dr is 
negative. As these move literally backward in time, we may identify them 
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with Dirac's (1929) antiparticles (Stfickelberg, 1941, 1942). So far the stand- 
ard interpretation has been that we have a negative mass or energy. Indeed 
this cannot be decided from the equations of motion. But if we look at the 
electric current generated by the particle, 

3Su _ q f dv 3 4 ( x -  f ( x ) -  

3 

(s) = aqvU(t) [I 8(xi-xi(t)) (41) 
i = 1  

and the corresponding source term for the gravitational field 

TU V(x ) fiSH - - - - = t o o  dr fi4(x-x(r))#(r)Jcv(r) 
figu v(x) J 

3 

(s) = mv~(t)v~(t) l-[ fi(x i -  xi(t)) (42) 
i = 1  

we see that it is the observable charge that depends on the sign o-, not the 
mass. Hence all particles have positive mass. 

There are obviously two transformations that change o-: the inversion 
of either time or proper time. We first discuss time inversion (Stiickelberg, 
1941; Feynman, 1949), assuming the transformation exists at least locally 
also in the context of general relativity. The complete coordinate trans- 
formation in five dimensions is given by 

ir i x ~  ~ x = x ,  i = l  . . . .  ,4  
(43) 

p/= po, g o,= 

where the 5 x 5 transformation matrix ~" is given by 

T= diag(-1,  1, 1, 1, 1) (44) 

The action is invariant under this transformation; hence a transformed 
trajectory x~'(r) is a solution of the equations of motion if xU(r) is. If  
x~ > 0, then x~  0; the transformed trajectory belongs to an antipart- 
icle with observable charge -q .  We see that the time inversion changes the 
charge, although it does not change the variable p4 that contains information 
on the charge. But the sign of the variable P0 that defines the energy is 
changed and following conventional wisdom we should say that the anti- 
particle has negative energy. But we cannot decide whether this interpreta- 
tion is correct, because the exterior field changes under the transformation 
(43), #~ -- -~~ for fi = 1, 2, 3, 4. We will now use the r inversion 
transformation to prove that antiparticles have positive energy. The inversion 
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of the proper time is a reparametrization of trajectories, not a coordinate 
transformation. It is defined in any geometrical context by 

r ' = - r +  ( r l +  to) 

(x'(r'), p'(r ')) = (x(r), - p ( r ) )  
(45) 

It leaves the action invariant. The coordinates and external fields are not 
changed by this transformation. Hence in any coordinates we have 

and 

x~(t) '=  x~( t )  (46) 

vZ(t) '=  v ' ( t )  (47) 

Thus the observable positions (46) and velocities (47) of the trajectories x(r) 
and x'(v') are the same, so if x'(r ')  is a trajectory of a physical particle, this 
particle has the same observable mass, charge, energy, and momentum as 
the particle described by x(r) ,  since the external fields are the same and all 
observable quantities can be read off the trajectory of the particle. This is 
the important point of the proper time inversion transformation: it excludes 
the interpretation that antiparticles have negative energy if we start with the 
assumption that particles have positive energy poe. In general, we conclude 
that the observable momenta of any particle or antiparticle are given by o'p. 

This also explains the behavior of p4 under time inversion. We are thus 
forced to distinguish between the variables and the observables of the class- 
ical relativistic theory, a concept that has so far been restricted to quantum 
mechanics. 

The observable energy E of any particle is now given by 

E = ~poc = megovV v + ~yqAoe (48) 

with the relativistic mass m given by (32). Due to large values of the potential 
Ao the energy may indeed become negative in the classical theory, but this 
is not linked to the concept of antiparticles, since the sign of S ~ does not 
change during the motion. In general the energy of an antiparticle will be 
positive, just like that of a particle. 

From equation (49) we see that m e  2 is the energy only in the absence 
of external fields. We look at the nonrelativistic limit of ~poc where the 
spatial components of v are small compared to c. Together with the weak 
field assumption for the gravitational field 

2~ 
goo=l§  c2, g i~=- l ,  i = 1 , 2 , 3  (49) 
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with gravitational potential �9 we get 

crpoc ~ moc 2 + �89 v2 + moCb + crqAoc (50) 

which is clearly the energy of a nonrelativistic particle. If the external fields 
are time independent, crpoc is conserved, as we already pointed out, whereas 
m e  2 in general is not. We thus have shown that the concept of antiparticles 
may be included into classical relativistic theory without the feature of nega- 
tive energy. This means that in the classical theory the process 

e ~ + 2 7 /  (51) 

where an electron changes into a positron under the production of two 
photons is forbidden by energy conservation if we interpret the arrow as 
coordinate timelike. Viewed as a process in proper time, the process exists 
and describes the total reflection of a particle in time, that is, the creation 
or annihilation of an electron-positron pair. 
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